미분공식 4

[미적분] 연쇄 미분 공식의 증명

이번 글에서는 연쇄 미분 공식의 증명을 살펴보겠습니다. 연쇄 미분 공식의 정의는 다음과 같습니다. 함수 g와 함수 h의 합성함수인 f(x) = g(h(x))가 있을 때, f'(x)는 다음과 같이 표현할 수 있습니다. f'(x) = g'(h(x)) * h'(x) 이제 증명을 해보겠습니다. 먼저, f(x) = g(h(x))의 정의를 사용하여, x와 x + Δx 사이의 f(x)의 변화를 나타내는 f(x + Δx) - f(x)를 구하면 다음과 같습니다. f(x + Δx) - f(x) = g(h(x + Δx)) - g(h(x)) 이제 위 식을 Δx로 나눈 후, Δx가 0에 가까워질 때의 극한을 구하면 다음과 같습니다.. lim (Δx -> 0) [(g(h(x + Δx)) - g(h(x))) / Δx] 이 극한은 ..

Study/수학 2023.04.20

[미적분] 합, 차, 곱, 분수 미분 공식의 증명

오늘은 기본적인 미분공식의 증명에 대해 설명하겠습니다. 대표적인 미분 공식들은 다음 글에 있습니다. [미적분] 미분공식 [미적분] 미분공식 이 글에서는 미분 공식의 기초를 살펴보고, 기본 공식부터 삼각함수의 미분 공식까지 알아보겠습니다. 기본 미분 공식: 미분의 정의에 따라, 함수 f(x)의 도함수를 f'(x) 또는 df/dx로 표기합니다. web-story.tistory.com 합의 미분 공식 합의 미분 공식은 두 함수의 합의 미분이 각 함수의 미분의 합과 같다는 것을 나타냅니다. (g(x) + h(x))' = g'(x) + h'(x) 증명: f'(x) = lim(h->0) [(g(x+h) + h(x+h)) - (g(x) + h(x))]/h = lim(h->0) [(g(x+h) - g(x))/h + (..

Study/수학 2023.04.18

[미적분] 기본 미분 공식의 증명

오늘은 기본적인 미분공식의 증명에 대해 설명하겠습니다. 대표적인 미분 공식들은 다음 글에 있습니다. [미적분] 미분공식 [미적분] 미분공식 이 글에서는 미분 공식의 기초를 살펴보고, 기본 공식부터 삼각함수의 미분 공식까지 알아보겠습니다. 기본 미분 공식: 미분의 정의에 따라, 함수 f(x)의 도함수를 f'(x) 또는 df/dx로 표기합니다. web-story.tistory.com 미분의 정의는 다음과 같습니다 f'(x) = lim(h->0) [(f(x+h)-f(x))/h] 여기서 f'(x)는 함수 f의 도함수를 의미합니다. 또한 이 정의를 통해 기본 미분공식을 증명할 수 있습니다. 1. 상수함수 미분 증명: f(x) = c, c는 상수 f'(x) = lim(h->0) [(c-c)/h] = 0 2. 거듭제..

Study/수학 2023.04.17

[미적분] 미분공식

이 글에서는 미분 공식의 기초를 살펴보고, 기본 공식부터 삼각함수의 미분 공식까지 알아보겠습니다. 기본 미분 공식: 미분의 정의에 따라, 함수 f(x)의 도함수를 f'(x) 또는 df/dx로 표기합니다. 다음은 몇 가지 기본 미분 공식입니다. 상수 미분: c'(x) = 0 (c는 상수) 일차 함수 미분: (x^n)' = nx^(n-1) (n은 자연수)합, 차, 곱, 분수의 미분 공식: 2. 두 함수 f(x)와 g(x)에 대한 합, 차, 곱, 분수의 미분 공식은 다음과 같습니다. 합의 미분: (f(x) + g(x))' = f'(x) + g'(x) 차의 미분: (f(x) - g(x))' = f'(x) - g'(x) 곱의 미분 (곱셈 법칙): (f(x) * g(x))' = f'(x) * g(x) + f(x) ..

Study/수학 2023.04.16