이번 글에서는 연쇄 미분 공식의 증명을 살펴보겠습니다. 연쇄 미분 공식의 정의는 다음과 같습니다. 함수 g와 함수 h의 합성함수인 f(x) = g(h(x))가 있을 때, f'(x)는 다음과 같이 표현할 수 있습니다. f'(x) = g'(h(x)) * h'(x) 이제 증명을 해보겠습니다. 먼저, f(x) = g(h(x))의 정의를 사용하여, x와 x + Δx 사이의 f(x)의 변화를 나타내는 f(x + Δx) - f(x)를 구하면 다음과 같습니다. f(x + Δx) - f(x) = g(h(x + Δx)) - g(h(x)) 이제 위 식을 Δx로 나눈 후, Δx가 0에 가까워질 때의 극한을 구하면 다음과 같습니다.. lim (Δx -> 0) [(g(h(x + Δx)) - g(h(x))) / Δx] 이 극한은 ..